Vertical cell responses to sound in cat dorsal cochlear nucleus.
نویسنده
چکیده
The dorsal cochlear nucleus receives input from the auditory nerve and relays acoustic information to the inferior colliculus. Its principal cells receive two systems of inputs. One system through the molecular layer carries multimodal information that is processed through a neuronal circuit that resembles the cerebellum. A second system through the deep layer carries primary auditory nerve input, some of which is relayed through interneurons. The present study reveals the morphology of individual interneurons and their local axonal arbors and how these inhibitory interneurons respond to sound. Vertical cells lie beneath the fusiform cell layer. Their dendritic and axonal arbors are limited to an isofrequency lamina. They give rise to pericellular nests around the base of fusiform cells and their proximal basal dendrites. These cells exhibit an onset-graded response to short tones and have response features defined as type II. They have tuning curves that are closed contours (0 shaped), thresholds approximately 27 dB SPL, spontaneous firing rates of approximately 0 spikes/s, and they respond weakly or not at all to broadband noise, as described for type II units. Their responses are nonmonotonic functions of intensity with peak responses between 30 and 60 dB SPL. They also show a preference for the high-to-low direction of a frequency sweep. It has been suggested that these circuits may be involved in the processing of spectral cues for the localization of sound sources.
منابع مشابه
A Simulation-Based Study of Dorsal Cochlear Nucleus Pyramidal Cell Firing Patterns
A two-variable integrate and fire model is presented to study the role of transient outward potassium currents in producing temporal aspects of dorsal cochlear nucleus (DCN) pyramidal cells with different profiles namely the chopper, the pauser and the buildup. This conductance based model is a reduced version of KM-LIF model (Meng & Rinzel, 2010) which captures qualitative firing features of a...
متن کاملIntrinsic and synaptic properties of vertical cells of the mouse dorsal cochlear nucleus.
Multiple classes of inhibitory interneurons shape the activity of principal neurons of the dorsal cochlear nucleus (DCN), a primary target of auditory nerve fibers in the mammalian brain stem. Feedforward inhibition mediated by glycinergic vertical cells (also termed tuberculoventral or corn cells) is thought to contribute importantly to the sound-evoked response properties of principal neurons...
متن کاملEvidence of stimulus-dependent correlated activity in the dorsal cochlear nucleus of decerebrate gerbils.
Cross-correlation analysis of simultaneously recorded spike trains was used to study the internal organization of the dorsal cochlear nucleus (DCN) of unanesthetized decerebrate Mongolian gerbils. The goal was to test the model (adapted from cat) that its principal cells (type III and type IV units) receive three sources of shared auditory input: excitatory input from the auditory nerve; inhibi...
متن کاملStimulus-Timing Dependent Multisensory Plasticity in the Guinea Pig Dorsal Cochlear Nucleus
Multisensory neurons in the dorsal cochlear nucleus (DCN) show long-lasting enhancement or suppression of sound-evoked responses when stimulated with combined somatosensory-auditory stimulation. By varying the intervals between sound and somatosensory stimuli we show for the first time in vivo that DCN bimodal responses are influenced by stimulus-timing dependent plasticity. The timing rules an...
متن کاملRole of the dorsal cochlear nucleus in the sound localization behavior of cats.
The role of the dorsal cochlear nucleus (DCN) in directional hearing was evaluated by measuring sound localization behaviors before and after cats received lesions of the dorsal and intermediate acoustic striae (DAS/IAS). These lesions are presumed to disrupt spectral processing in the DCN without affecting binaural time and level difference cues that exit the cochlear nucleus via the ventral a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 82 2 شماره
صفحات -
تاریخ انتشار 1999